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INTRODUCTION

One of the important aspects of quantum groups is the link with the theory ot
g-special functions. It is already known that various g-special functions arise
naturally in the framework of quantum groups. Roughly speaking, quantum
groups, as well as other group-theoretic frameworks, have at least two ways
to provide special functions: one as spherical functions on coset spaces, and the
other as connection coefficients describing the tensor products of representations.

As to the study of connections of quantum groups with g¢-special functions,
one of the most important contributors is Prof. T.H. Koornwinder, who was
among the first to recognize that the unitary representations of the quantum
SU(2) group give a natural interpretation of the little g-Jacobi polynomials
as matrix coefficients ([9], see also VAKSMAN-SOIBELMAN (24| and MASUDA et
al [13]). He also showed, in a joint work with KOELINK [8], that the g-Hahn
polynomials arise naturally as the Clebsch-Gordan coeflicients for the quantum
SU(2) group (see also [7]). More impressive to the author is his realization of
the continuous g-Legendre polynomials and a two-parameter family of Askey-
Wilson polynomials as zonal spherical functions on the quantum SU(2) group
({10], [11]). This discovery of Koornwinder has brought out a new stage ot links
between the nature of g-special functions and geometric problems in quantum
groups. For these subjects, we refer the reader to the survey paper 12] by
Koornwinder himself (see also Nouwmt [15] and NOUMI-MIMACHTI [16]-[19]).

In this article, we would like to discuss a slightly different point relating quan-
tum groups to ¢g-special functions. This subject was motivated by a recent work
of HORIKAWA [5], who showed that the contiguity relations for the general ¢-
hypergeometric series 2@, can be described by the quantized universal enveloping
algebra U,(gl(4)). He found this fact by investigating g-analogues of Geltand’s
interpretation of Gauss’ hypergeometric functions by the Grassmann manifold
Grass(2,4). This work is remarkable because it implies that quantum groups
are involved in g-analysis from its very starting points. He has also obtained
analogous results [6]
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for the case of Grass(k,n), where some g-hypergeometric series, including a
g-analogue of Lauricella’s Fp, and their contiguity relations are discussed. It
1s not clear, however, why quantum groups arise as contiguity relations for g-
hypergeometric series. Horikawa’s presentation is in fact given by factorizing
directly the ¢-difference equations for them.

T'his article 1s an attempt to give an intrinsic explanation of the phenomenon
that the quantized universal enveloping algebras arise as the contiguity rela-
tions for g-hypergeometric series. Our approach is carried out by considering a
quantum analogue of the Grassmann manifolds and the Gelfand hypergeometric
functions associated with them. In this article, we discuss exclusively the case
of Grass(2,n) and show that a g-analogue of Lauricella’s hypergeometric series
F'p of n — 3 variables falls into this framework. From this interpretation, we see
that the quantized universal enveloping algebra U,(gl(n)) arises naturally as the
algebra describing the contiguity relations of these g-hypergeometric series. The
exposition 1n this article is still experimental and incomplete in many respects.
The author hopes that the framework of Gelfand’s generalized hypergeometric
functions will activate mathematical interactions even between quantum groups
and g-special functions. The author is grateful to Prof. Horikawa for valuable
suggestions and for communicating his preprints before publication.

1. GELFAND’S HYPERGEOMETRIC EQUATIONS

In this section, we give a brief review on Gelfand’s generalized hypergeometric
equations ([1], [2]), associated with the Grassmannian Grass(k,n) (k < n). In
what follows, we denote by Grass(k,n), or simply by Gk, the Grassmannian
consisting of all k-dimensional subspaces of the n-dimensional complex vector
space C". Let us consider the general £ x n complex matrices

t1n tig - tin
T — to1 tzg ton | )
k1 tk2 - Tkn "

The Gelfand hypergeometric equation of type Gy, is the following system of
differential equations defined on the matrix space Mat(k,n):

0
>t =—(T) = —6-,9(T) (1<rs<k), (2)
j=1 89
.
Sty —@(T) = A 8(T) (1<j<n), (3)
re=1 atr:)
O* o
—P(1') = ———P( 1<r<s< <1< 3 < n)

8t"f‘z’8t$j ( ) ats?:atrj (T) (]- STr<ss ka 1 S1< ) S ?’L), (4)
where \; (1 < 7 < n) are complex parameters such that Z;"ml A; = —k. Multi-

valued holomorphic solutions ®(71") of the system (2)—(4), defined on an appro-
priate open subset of the matrix space Mat(k,n), are called Gelfand’s hyperge-
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ometric functions of type Gi ,. Note that equation (2) is equivalent to saying
that &(7") has the relative invariance

@(gT) = det(g) ™ ®(T) (g9 € GL(k)), (5)

under the left action of GL(k). On the other hand, equation (3) requires the
homogeneity

&(Tdiag(ci,...,cn)) = S(T)er? -+ - ¢, (6)

under the action of the diagonal subgroup of GL(n). Equation (4) is the essential
part of the Gelfand hypergeometric equation. In fact, from (4), many examples of
classical hypergeometric functions in some appropriate variables can be obtained
by eliminating the relative invariance (2) and (3).

For simplicity, we consider the case of the Grassmannian Grass(2,n). In this
case, the Geltand hypergeometric equation above is related to Lauricella’s hy-
pergeometric functions Fp in n — 3 variables (|2]). Note first that the generic
2 X n matrix 71" has the following decomposition:

T = t11 12 1 O 1 i 1

t21 t22 0 1 Ly - Tn
xdiag(1,1, —&23/&12, -+, —&2n/12), (7)
where fz‘j — tlitgj mtgitlj for 1 < i,j g n and and £y = —*flj/fgj for j — 3.__, e, T

The relative invariance (5), (6) implies that ®(T") can be written in the form

(I)(T) —— G(-’I'Sa T ,.C(:n) ?21+)\2+1(_§23)A3 T (“5271)/\”7 (8)
for some function G(zs,...,z,) in the variables (x3,---,zn). Note here that
Z?____l A; = —2. Furthermore, the function & (z3,- -, xy,) should be homogeneous
of degree —\5 — 1 from the condition (6). Hence, G(x3,---,Tn) takes the torm
G(23, - Tn) = F(za,"++,2n)T3" 27", (9)

where z; = x;/x3 for j = 4,---,n. In these coordinates z = (24, ", 2n), it 18
known that equation (4) gives rise to the following differential equation to be
satisfied by the function F'(z4,: -+, 2n):

[96(3" 9+ Xa+Aa+1) =2k (O —Ak) (D O+ A2+ 1)} F (24, -+, z0) = 0,(10)

fork =4,---,n, where 9; = z;0/0z; (j =4, --,n). Asolution to this equation,
holomorphic near the origin z = 0, is given by Lauricella’s hypergeometric series

- )\2+1;“A47"'7")\”. ) 11)
FD( )\2+)\3+2 y Z4 y en | (



Lauricella’s hypergeometric series F'p are defined as follows:

/.
. (Y, 3 1y°" . 6*77‘1,

8
- Z “(a‘)ljl +“;;+UTIL(QI)V1|*:‘;‘:“(/B?T““““)J:& 121’11/1 R Vﬂrla (12)
(7)“1""”“?‘“7:1 VyosrVUm.

1y sVin EO

where (o), = ala+1) - (a+v —1).

It should be noted that the system of equations (4) is covariant under the
adjoint action of GL(n). From this property, it is known that the contiguity
relations for Lauricella’s Fp are described by the Lie algebra gl(n). For the
details, see [4], [22], [14] for example.

2. QUANTUM GRASSMANNIANS
We now start to consider the quantum analogue of Gelfand’s framework of
generalized hypergeometric functions. For this purpose, we investigate a q-
detormation of the graded algebra of homogenous functions on the Grassman-
nian.

Recall that the coordinate ring A,(Mat(k,n)) of the quantum matrix space
Mat,(k,n) is the algebra generated by the “canonical coordinates” tri (1<7r <
k,1 <7 <n) with commutation relations:

t?ﬂjtﬁ'j — thjt?"j (1 <r<s< k‘, 1 < .7 < n)a
t?‘fi”'?*j — qt?"jtri (1 S r § k: 1 ...<..... 1 < .7 < n)a

t?‘jrsi — t$‘it“f‘j3
britsj = tsjtri = (@ —q  trjtsi (1<r<s<k1<i<j<n). (13)

These generators correspond to the matrix coordinates T — (trj)1<r<k.1<j<n as
in (1). It will be helpful to note that, for each 1 Sr<s<kand1<i<j<n,
the 2 x 2 matrix of generators

a b _ Lri tg,»-j l
( ¢ d ) B ( tsi lsy ) (14)

satisfies the Mat,(2)-relations:

ab = gba,ac = qca, bd = qdb, cd = qdc.

bc = cb,ad — da = (q — g~ 1)be. (15)

In what follows, we fix a complex number ¢ with 0 < lq| < 1.

We recall that the algebra A,(Mat(k, n)) has a natural structure of a two-sided
comodule over the pair of Hopf algebras (Aq(GL(k)), A;(GL(n))). Accordingly,
it becomes a bimodule over the pair (U, (gl(n)), U,(gl(k))). By using this struc-
ture, we can consider the quantum analogue of the coset space SL(k)\Mat(k,n).
Note that the quotient space SL(k)\Mat'(k,n) of the open subset Mat'(k,n)

of all matrices of maximal rank defines a C*-bundle over the Grassmannian
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Grass(k,n) = GL(k)\Mat'(k,n) with the natural projection. Let A be the fol-
lowing subalgebra of left SL,(k)-invariants in A,(Mat(k,n)):

A = A (SL(k)\Mat(k,n))
{p € Ag(Mat(k,n));p.a =¢e(a)p forall ae U,(sl(k))}. (16)

|

By the standard monomial theory for this case, one can show that the algebra
A is generated by the quantum minor determinants

£(w .. . .
gjljz'”jk — Z (""CJ) (w)tw(l)jltw(z)jg ' ”t'w(k)jk:(]' < Ji1,J2, " Jk <) (17)
’LUES;C

where Sj stands for the permutation group of & letters and, for each w € Sy, £(w)
denotes the number of inversions in w. These quantum minors are analogues
of the Plucker coordinates of the Grassmannian Grass(k,n). For the classical
Plucker coordinates of the Grassmannian, see [3], for example. The general
Plucker relations for our quantum minors can be found in [21] and [23].

In the case of the Grassmannian Grass(2,n), the structure of the algebra
A = A (SL(2)\Mat(2,n)) is simply described. We remark first that the quantum
minors

§ij = trita; — qtoty;, (1 <15 < n) (18)

satisty the following two types of Plicker relations:

£12€34 — q€13€24 + q°E14623 = 0,
34812 — @ "€24€13 + ¢ %E23614 = O. (19)
The other Plucker relations are obtained by replacing the sequence 1 < 2 < 3 < 4

by an arbitrary increasing sequence i < j < r < s of indices. The typical
commutation relations among &;; are given as follows:

11 =0, g€12 + €21 = 0,

§12613 = q€13&12, §12823 = ¢€23812, 13823 = q€23&13,
12834 = q°E34€12, E13€24 — E24&13 = (q@ — ¢~ 1)&€14€23, E1423 = E23&1a. (20)

To get the other commutation relations, replace 1 < 2 < --- by any increasing
sequence 1 < 7 < ---. It is interesting to see that the 2 X 2 matrix

a b\ [ &3 &4 '
(C d)m(fm 524) (21)

again satisfies the Mat,(2)-relations (15). In this case the quantum determinant
1S given by

ad — qbc E13604 — q€14€23 = ¢~ T€12€34  OF
da — q”lcb = £94&13 — qml€23§14 = g€34&12. (22)

The last equality is the Pliicker relation.
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where u; = ---Egj'"lflj for y = 3,---,n. Let us denote by R the subalgebra of
Al €055+, €50 ] generated by the elements ug, - - -, u,,, regarding them as a
quantum analogue of the homogeneous coordinates of the projective n — 3 space.
By the argument above, we see that the algebra A[¢7', €5, -+, €] has the
decomposition

.....

1 — 1 — 1 An A .. YO
A[glfz 36'23 y © T 76‘2% ] — @ 5‘2’71 |t 6‘23 3&12“’73. (28)
Ma)\fﬁv”'ﬁ)\nez

Although R is still a noncommutative subalgebra, its structure is not too com-
plicated. In fact, the generators us, - - -, u,, satisfy the commutation relations

(u; — uj)'uflc — QQ’LLA; (u; — u;) for (3<1,53<k<n). (29)

If one takes another system of generators
U3 = U3 — Ugy "+, Up] = Up—1 — Uy and v, = uU,, (30)

then their commutation relations are simply given by Vv = quuJ-Ui for 3 <1«
J < n.

4. A REPRESENTATION OF U,(gl(n))

Recall that U,(gl(n)) is an algebra generated by the symbols ¢=¢ ﬂ(l <7 5
n),e;, f; (1 < j < mn—1). Hereafter, we use the notation ¢g" = ¢! -.-g*»"
for any linear combination h = a €, + - - - + a, €, with integral coefficients. Then
the fundamental relations for the generators of U,(gl(n)) are given by

0O __ h h! _  _h+h'
q - 13 q q - q )

qhejq--—f’z. — q<}b.,(l’.j>€j’ thjq--h — q—-<h,,(xj>fj (1 S J S n — 1)’
ezf} . fjet — 5*ij(qmmm+l _ q-h"l'f?;:{—l )/(q . q—"l) (1 < l,.,] < n-— l).,
eie; = eje;, [if; = fifi (li—7272),

81263' — (g + qml)eifﬂj@i T 6j€z‘2 =0 (li—Jjl=1)

2 —1 P - : S ey
Fiifi—(@+a OEGi+ =0 (li—j]=1), (31)
where a; = €¢; — €41 for 1 < j < n—1and <, > stands for the canonical

symmetric bilinear form such that < ¢;,¢; >= 6;;. The last two cubic equations
of (31) are sometimes referred to as the Serre relations. The algebra U,(gl(n))
has a Hopf algebra structure. We take here the following convention of the
coproduct A:

A(qh) — q}l ® th
Ale;) = e, ®1+¢7 9 ®e; (1<j<n-—1),
A(f;)) = ¢ 9T +1®f; (1<j<n-—1). (32)

We denote its counit and antipode by & and S, respectively:

e(q") =1, e(e;) =0,e(f;) =0, .
S(g") = q7", S(ej)=—q T+ e;, S(f5) = —fiq7 (33)
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for 1 <j<n-1.

The coordinate ring A,(Mat(2,n)) of the quantum matrix space Mat,(2,n)
has the structure of a left U,(gl(n))-module. Furthermore, it is an algebra with
U,(gl(n))-symmetry in the sense that

(a) a.1 = e(a)l for all a € U, (g,l(n)) ;
() if a € U, (gl(n)) and A(a) =) . a; @ a’, then

T

a.(p) = Z a’.p a! .4 for all o, ¥ € Aq(hfdt(Q n)).

The actions of ¢" and ey, fr on the generators tri(l1 <7 <2,1<j5<n)of
A,(Mat(2,n)) are given by

< h e >t

h
q *tfr'j — q rjs €k t?“j — (SA+1JfTA3 fk Ty T (Sli ,Jr k415 (34)

respectively. Their actions on an arbitrary element ¢ € A,(Mat(2,n)) are then
determined by a successive use of the rule (b) above. It is clear that the invariant
ring A = A,(SL(2)\Mat(2,n)) is a left U,(gl(n))-submodule of A,(Mat(2,n)).
The action of U,(gl(n)) on the quantum minors is determined by

h <h,ei+e; >¢

q -&ij = q 77 &y

@ ~ .. — 5 é < (Y} €5 >
Ck-‘gzg — k-1 zEkJ T k41,74 fzka

|
o

Jr-&i : #z':q“<““””>§k:+1,j + c‘)“k-,,j(f?:kq-l. (35)

We now consider the localization A[¢5', €5, -, €1 of A discussed in the
previous section. This algebra has a unique structure of an algebra with U . (gl(n))-
symmetry containing A as a U,(gl(n))-submodule. Suppose that ¢ is a weight

vector of weight 4 in A : ¢".po = ¢<"F#>p. If © is invertible in a localization of
A, then we must have

h —1 —<h,u> -1

} -1 —l > o~ — 1
€k . — (] kol e €. @

fop™! = =gt ol f o L (36)

provided that the properties (a), (b) above are preserved We can extend the

action of U,(gl(n)) on A to AL, &5, -, >n] by the rules (36) for ¢ =

£19, &.233 -, &an, so that the conditions (a), (b) are satisfied in the localization
Alér s zslv‘ o | as well,

Recall that the algebra A[¢}, €550, - - €511 has the decomposition
-1 =1 —17 An A |
Al &ay s n€on] = EB;;L,A;%,--',AHEZ&’” 8237 812 R (37)

Note that the subalgebra R, generated by the elements uj = mggj“lglj (3 <
J < n), has a monomial basis

1,

Unp o Up—1 "7 - #Z-LSUB (1/3) "y Vp € N) (38)

We cousider the commutative algebra Clzs, - -, Ty of polynomlals In n — J vari-
ables and define an isomorphism of vector spaces ¢ : Clzs, --,z,] >R by the
normal ordering
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¢($3V3 T -’L'nUﬂ) = Up"" - usz” 3. (39)

In order to translate the action of U,(gl(n)) into the terms of usual g-difference
operators, we consider a copy of the polynomial ring Clrs,-- -, x,):

5=, 1. csurnn 0
where G, ), = Clxs, - -,y for all u,Ag,---,\,, € Z. Then we define an

isomorphism of ve(,tor spaces

w: GHAEL 12 ) 523 y T vfgnl] (41)
as the direct sum of linear mappings
. ~ An A 4 " Ay
Wy, - ClEs, - Tn| =800 -+ 53E1LR (42)
such that
A o
’UJ“ A3, ( ) 5‘3’71 62 1‘9 ( ) (4‘3)

for all G & C[ X3, +,ZTn|- Through the isomorphism w thus defined, we obtain
a left U, (gl (n))-—module structure on the vector space §.

After some explicit computations, we see that the action of U,(gl(n)) on
G 1s actually described 1in terms of the ¢-difference operators with respect to
the variables x3,---,x,. Suppose that a is an element of U,(gl(n)) such that
q"aq™" = q<"">a for some kK = K1€; + -+ Kne, (K; € Z). If a is an element of
weight x in this sense, then its action on G is represented by a family of operators

B (@) 5 Gruraenn = Grorg e, m

where 1/ = p + K1 + K2, A, = Aj + K5 (J 2 3). These operators py a,....a, (@)
a,re in fact expressed by d q- dlﬁerence operator depending polynommlly on
gTH gTr3 ... gt . We remark that a commutation relation among the op-
erators Pu Ao, (@) (a € Uy(gl(n)) makes sense even for non-integral values of
Ly A3,y Ap, 1f 1t depends polynomially on g— hogEAS - .,gT* and is valid for
all 1, )\3, .\, € Z. The explicit formulas of the operators p, ...z, (a) for
a = q,e;, f:, will be given in the next section after we restrict them to some
spaces of homogeneous functions.

5. A g-ANALOGUE OF LAURICELLA’S Fp

In view of the formulas (8) and (9) in the classical case, we take the homogeneity

of G = G(z3,--,zn) into our consideration. Let U be an open set of the

algebraic torus (C"")"f”"""'2 with coordinates x = (x3, - - - , T ) and suppose that U

is stable under the action of the multiplicative group (q)“"’""z. For each n-tuple
= (A1, A2, -+, A\, ) of complex numbers with S A = ---~23 we denote by Fy

7=1 .
the vector space of all holomorphic functions G = G(zs, - - .+, xy) on U such that

—Ap—1 , AR
Tqam3 T T(I?m?’l-G — q ) G" (1))
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We take here the general convention to denote by T4,z; the g-shitt operator in
the variable x;:

Y—‘q,;‘rj G(lda T iUn) — G(.‘:CJ, (g, axn)* (46)
For each element a € U,(gl(n)) of weight x, we define an operator
pala) : Fy — Fr+r (47)

by setting

p,\(a) — pw)\1+/\2+15'\31"':/\n (a’)' (48)

Here the right-hand side is understood as a g-difference operator depending
polynomially on the parameters ¢*=*,... ¢**» With these operators p,(a),
we obtain a representation 7 = €D, F) of the quantized universal enveloping

algebra U,(gl(n)).
We give below the explicit formulas for the g-difference operators
pa(@V)  Fa—oFn (1<5< n),
pale;j) : Fy— Fixte; (157 <n~1),
Palfi) ¢ Fa—=Face, (1<j<n-—1), (49)

where a; = €; — €;41. For simplicity, we set 15 =TT = Tjp1Tjo--- T,
for j = 3,---,n. With these notations, we have

pr(g9)=qY (1<j<n),

T
(9= a7 )paler) = ¢ " hogy — gmrmAe 2 D (@k = pp1) g™ Ty

k=3
1 _ a1 1
(@ — a7 )pa(eg) = g~ 1 F2 "3’“5;(1 - Ts),
_ . o xiL. X .
(4= apale;) = ¢4 (1 — 29T — g (1= Ty4), (2 3)
J
(9=q7)oa(f1) = P T3D" —(1 - T)Tsy,
T
k=3
(@ =47 )pa(fa) = =gt ay + g1 2022 Z(xk — Tht1)q T,
k=3
T . . T, .
(@=a"Dpalf) = M (1= VT + B (L1155 3). (s0)
J

Here we set Ln+1 = 0 and Asf = )\kf.,.l +---+2X,, . Note that we have I3---T, =
—2X0—2
{q on F.

With these operators, we consider the g-difference equation corresponding to

the equation (10) for Lauricella’s Fp. We recall that, in the classical setting of
Section 1, we have a remarkable identity
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0? 52
Ot1:0ty;  Oty;0ty; )j

(Bie + V) Ejj — EjiEij = (tuta; — tait1)( (51)
for each 7 < j, where (E;;)1<; j<n is the basis for the Lie algebra gl(n), corre-
sponding to the matrix units. In view of this equality of Capelli type, we look
at the elements

for 1 < 7 < n-—1. For each j, C; is a central element of the subalgebra

Clg™, g™+, ¢, f;] of U,(gl(n)). By the explicit formulas above, we compute

(q “"" qwl)zﬁf\(cj) — (i??j ""‘“ ff?j+1) (53)
x{e; (1 =T (1= ¢ 2N T0) =2 (1= @M T (1= Tig)}

for 7 > 3. Hence, it is reasonable to investigate the following g-difference equa-
tion for the unknown function G = G(x):
Ts---T,G(x) = ¢ **?72G(x) and
o7 (1= T (1= g0 TG )
=2 (1= VT (1 = Tj41)G(x) (3<j<n) (54)

T'he g-difference equation (54) above can be regarded as a homogeneous form
ot a g-analogue of the equation (10) for Lauricella’s hypergeometric series Fp.
Let us consider the following g-analogue pp of Fp:

a;bla'”ab?n |
@D ( v g tla e 9t”rr'z,

C

Z (a; E_])Ul +"'+Tu’.r‘n (bl; Q)Vl . . ' (b'"’l; Q)__UTH tlb’l . . tﬁr””"rr}, . (55)
(C5 q)’/l +er Vo (q; Q)Vl Co T (q; q)l/'r‘rz

V1 :‘”3“?’1120

This g-hypergeometric series defines a holomorhic function around the origin
tp =---=1,, = 0. Under the condition that Ao + Az i1s not an integer, one can
directly check that the g-difference equation (54) has a solution

20 94+1). ,—2A4 —2A
. v “A .........1 q q S ’q - 2# ~ | “
G(A;Z3, -, 2n) =327 D ( qu(Ag—f—A:;—FZ) 4T ’3“”‘) (96)

where the variables z4,-- -, z,, are given by

z; = q2(1+/\3+/\4+—~+)\j)33j/$3 (j =4, ---,n). (57)

By a direct verification, we can also show that, if a is an element of U, (gl(n))
of weight x, the g-difference operator py(a) transform the solution G(\;x) to a
constant multiple of G(A+k; ). In this sense, the family of g-difference operators
px(a) describes the contiguity relations for the g-hypergeometric series pp. It is
also checked that p A(C;)G(A;z) =0 for all 1 < 5 < n— 1. For convenience, we
will give in the last section the explicit formulas of the contiguity relations for

the g-hypergeometric series ¢ p appearing in (56).
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Our derivation of the g-hypergeometric equation (54) is still incomplete since
1t 1s based only on the elements C; of (52). It is expected that a more systematic
approach to the g-analogue of Gelfand’s hypergeometric equations can be carried
out by using the quantum analogue of the differential operators as in 120].

6. CONTIGUITY RELATIONS FOR @[
We consider the following g-analogue of Lauricella’s hypergeometric series Fp:

(L; b y -7 ‘?b?’:,
5‘9[)( 1 y Y ;q;tla”'at'rn)

C

Z (a; Q)UI ++Vrl(bl ;Q)Ul ‘;;(?)771; Q)UWL

(S Dvittvm (@G D, - (5 9)0,,

3} R t'r?’zum- (58)

V1, Ui 20
Note that the g-hypergeometric series ¢ = ¢p satisfies the g-difference equation

{(1 = qumchLt)(l — Tchtj ) — tj(l — aTq.,t)(l — bjj_‘flatj)}@ =0(1<5< m),
Wil =0T (1= Tye,) = t;(1 =T )1 = b,T, V=0 (1 < i < j < m),
(59)

| . T
where Ty, = T+, -+ Tyy4,,. For each A\ = (A, -, \,) with D 1A = —2, we
define a series F'(); z) in the n — 3 variables z = (zg4, - - -, Zn) by

- q* P2 tl); g2 L g2 2
F()\a 3) — PD ( qz(,\2+,\3+2) yq 24y, zn) ; (60)

assuming that Ay + A3 is not an integer.

We give below explicit formulas for the tamily of g-difference operators that
describes the contiguity relations for F(\;2). For each \ = (A1, -+, An) with
> =1 A; = —2, we define the operators (@) (1 < 7 < n), male;), m(f;)
(1 <7< n-1) as follows:

m(g9)=¢" (1<j<n)

(g =97 )maler) = ¢M772(1 = P2 Fhat Dy _ gt i: 2k (1~ q73>* T} )Ty,
(@ —¢7 )ma(eg) = —g~ MR A1) _ 2024y -
(¢ = q7 " )males) = ¢™{(1 — g~ 2 Ty) — C]Q(MH)Z‘U — Ty)},
(¢ — g7 )male;) = ¢+ {(1 — g2+ T41) — qﬁ;j‘? 1 =T5+1)}T;,7" (5 > 4),
(g = g7 )ma(f1) = —q(1 — P24y 4 g1-2N y g-mz*A}i(l — Ty )Tk,
k=4 z"“‘
(@ = a7 )ma(f2) = {~¢M (1 — PPty 4 =N i: 2k (1= ¢ 2 D) TS 3T,
k=4
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(g— g Hmalfz) = g7 {—(1 — g?Petrs D) =2t 5 (1 — 22ty
(¢ = ¢ ma(fy) = ¢V {(1 = ¢ T) — g 2P D ZEL (L -1y} (j > 4), (61)

g

~ )

where 1}, = qu,zkaT>k: = Tey1dkyo -1, T = Lyds---T, and A5 = Apqpr +
Ak+2 + -+ + An. These g-difference operators, obtained from those in (50),
give a representation of the quantized universal enveloping algebra U,(gl(n)).

| .« TL |
For each A with » ., A; = —2, let H) be the same vector space of all germs
of holomorphic functions near z = 0 and consider the g¢-difference operators

ﬂ—)\(qéj) : H)\ — H)\, 71')\(63*) : H)\ — H)\+C¥ja 77}\(]0_;) . H,\ N HA-—-—-CMJ' fOr ij ==
€; —€j41. Lhese operators define a left U,(gl(n))-module structure on the direct

The contiguity relations for these g-hypergeometric series F'(\; z) defined above
are given explicitly as follows:

TA(@V)F (N 2) = ¢V F(Nz) (1<j<n),
ma(er)F(A;z) = —qM st 4 A +1]F(N 4 ay; 2),
T\ (eg)F()\, z) — q“)\lm’\s )\2 + lF()\ + ao; 2),

a1 A3+ 1A _

3)F (A — A2l PN+ s 2
71')\(63) ( Z) q [)\2 + AS + 2] ( (X3, )a
WA(ej)F(Aa Z) — [)\J—}-I]F()\ T O 2’) (.7 2 4)a

. A A2 + 1
F )\ — — AL A3 """"[ 1 - | “F /\ """ ) .
T (fo)F(X;2) = ¢T3t + 1]F () — as; 2),
m(f3)F (X 2) = ¢ ' o+ Az + 1JF(A — ag; 2),
() F(A2) = [NIFA—a552) (J24), (62)
where [a] = (¢* — ¢ %) /(g —q¢™")
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